Which input value produces the same output value for the two functions on the graph? f(x) equals negative StartFraction 2 Over 3 EndFraction x plus 1. g(x) equals StartFraction 1 Over 3 EndFraction x minus 2. A coordinate grid with two lines. One line labeled f(x) passes through (negative 3, 3), (0, 1), and point (3, negative 1). The second line is labeled g(x) and passes through (negative 3, negative 3), (0, negative 2), and point (3, negative 1). x = –3 x = –1 x = 1 x = 3

Respuesta :

Comparing the functions, it is found that:

  • For the first two functions, a input of x = 0 produces the same output values.
  • For the last two functions, a input of x = 3 produces the same output values.

---------------------------------------------------

First two functions:

[tex]f(x) = -\frac{2}{3}(x+1)[/tex]

[tex]g(x) = \frac{1}{3}(x-2}[/tex]

The outputs are equal when:

[tex]f(x) = g(x)[/tex]

[tex]-\frac{2}{3}(x+1) = \frac{1}{3}(x-2}[/tex]

[tex]-\frac{2}{3}x - \frac{2}{3} = \frac{1}{3}x - \frac{2}{3}[/tex]

[tex]-\frac{2}{3}x - \frac{1}{3}x = -\frac{2}{3} + \frac{2}{3}[/tex]

[tex]-x = 0[/tex]

[tex]x = 0[/tex]

For the first two functions, a input of x = 0 produces the same output values.

---------------------------------------------------

Last two functions:

  • f(x) goes through: (-3,3), (0,1), (3,-1)
  • g(x) goes through: (-3,-3), (0,-2), (3,-1)

For the two functions, when the input is [tex]x = 3[/tex], the output is [tex]y = 1[/tex]. Thus.

For the last two functions, a input of x = 3 produces the same output values.

A similar problem is given at https://brainly.com/question/13774366

Answer:

x=3

Step-by-step explanation: