Respuesta :

Space

Answer:

[tex]\displaystyle A = \int\limits^{2\sqrt{2} - 1}_{-(2\sqrt{2} + 1)} {(-x^2 - 2x + 7)} \, dx[/tex]

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Area of a Region Formula:                                                                                     [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

y = -x² + 4

y = 2x - 3

Step 2: Identify

Graph functions and find region and bounds of integration.

Bounds: [-(2√2 + 1), 2√2 - 1]

Step 3: Find Area

  1. Substitute in variables [Area of a Region Formula]:                                   [tex]\displaystyle A = \int\limits^{2\sqrt{2} - 1}_{-(2\sqrt{2} + 1)} {[-x^2 + 4 - (2x - 3)]} \, dx[/tex]
  2. Simplify:                                                                                                         [tex]\displaystyle A = \int\limits^{2\sqrt{2} - 1}_{-(2\sqrt{2} + 1)} {(-x^2 - 2x + 7)} \, dx[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Ver imagen Space