A student of mass 60.0 kg, starting at rest, slides down a slide 20.0 m long, tilted at an angle of 30.0° with respect to the horizontal. If the coefficient of kinetic friction between the student and the slide is 0.120, find (a) the force of kinetic friction, (b) the acceleration, and (c) the speed she is traveling when she reaches the bottom of the slide

Respuesta :

Answer:

Explanation:

Reaction force of inclined surface

R = mgcos30

=60 x 9.8 x .866

= 509 N

Force of kinetic friction

= .12 x 509

= 61.08 N

b )

net force downwards = mgsinθ - μmgcosθ

acceleration = g sinθ - μgcosθ

9.8 sin30 - .12 x 9.8 x cos30

= 4.9 - 1.018

a= 3.88 m /s²

c )

v² = 2as

= 2 x  3.88 x 20

v = 12.46 m /s

(a) The force is "61.08 N".

(b) The acceleration is "3.88 m/s²".

(c) The speed is "12.46 m/s".

Given:

Mass,

  • m = 60 kg

Angle,

  • [tex]\Theta[/tex] =  30°

Coefficient of Kinetic friction,

  • 0.120

According to the question,

Reaction force of inclined surface will be :

→ [tex]R = mg Cos \Theta[/tex]

      [tex]= 60\times 9.8\times 0.866[/tex]

      [tex]= 509 \ N[/tex]

(a)

The force of Kinetic friction will be:

= [tex]0.12\times 509[/tex]

= [tex]61.08 \ N[/tex]

(b)

The acceleration will be:

= [tex]g Sin\Theta - \mu g Cos\Theta[/tex]

= [tex]9.8 Sin 30^{\circ}-0.12\times 9.8\times Cos 30^{\circ}[/tex]

= [tex]4.9-1.018[/tex]

= [tex]3.88 \ m/s^2[/tex]

(c)

The speed will be:

→ [tex]v^2 = 2as[/tex]

       [tex]= 2\times 3.88\times 20[/tex]

       [tex]= 155.2[/tex]

    [tex]v = \sqrt{155.2}[/tex]  

    [tex]v = 12.46 \ m/s[/tex]    

Thus the above answers are appropriate.

Learn more about Force here:

https://brainly.com/question/16953941