Respuesta :

The value of f(-6) is -12.2

Explanation:

Given that the function [tex]f(x)=\frac{100}{-10+e^{-0.1\left(x\right)}}[/tex]

We need to determine the value of f(-6)

The value of f(-6) can be determined by substituting the value for [tex]x=-6[/tex] in the function and simplify the function.

Hence, let us substitute [tex]x=-6[/tex] in the function, we get,

[tex]f(-6)=\frac{100}{-10+e^{-0.1\left(-6\right)}}[/tex]

Let us apply the rule [tex]-\left(-a\right)=a[/tex] , we get,

[tex]f(-6)=\frac{100}{-10+e^{0.1\left(6\right)}}[/tex]

Multiplying the numbers, we get,

[tex]f(-6)=\frac{100}{-10+e^{0.6}}[/tex]

The value of [tex]e^{0.6}=1.822[/tex]

Substituting the value of [tex]e^{0.6}=1.822[/tex] , we get,

[tex]f(-6)=\frac{100}{-10+1.822}[/tex]

Subtracting the denominator, we have,

[tex]f(-6)=\frac{100}{-8.178}[/tex]

Dividing, we have,

[tex]f(-6)=-12.228[/tex]

Rounding off to the nearest tenth, we have,

[tex]f(-6)=-12.2[/tex]

Thus, the value of f(-6) is -12.2