A 15,000 kg rocket traveling at +230 m/s turns on its engines. Over a 6.0 s period it burns 1,000 kg of fuel. An observer on the ground measures the velocity of the expelled gases to be −1,200 m/s.

Respuesta :

Answer:

a) [tex]v = 312.791\,\frac{m}{s}[/tex], b) [tex]a = 13.333\,\frac{m}{s^{2}}[/tex]

Explanation:

The problem is asking the rocket velocity and acceleration at t = 6 s.

a) The general equation of the rocket is:

[tex]v=v_{o} -v_{ex}\cdot \ln \frac{m}{m_{o}}[/tex]

[tex]v = 230\,\frac{m}{s}-(1200\,\frac{m}{s} )\cdot \ln \frac{14000\,kg}{15000\,kg}[/tex]

[tex]v = 312.791\,\frac{m}{s}[/tex]

b) The acceleration experimented by the rocket is:

[tex]a = \frac{v_{ex}}{m_{o}}\cdot \frac{dm}{dt}[/tex]

[tex]a = \frac{1200\,\frac{m}{s} }{15000\,kg}\cdot \frac{1000\,kg}{6\,s}[/tex]

[tex]a = 13.333\,\frac{m}{s^{2}}[/tex]

a). The rocket's velocity of the expelled gases:

[tex]312.791 m/s[/tex]

b). The acceleration would be as follows:

[tex]13.33 m/s^2[/tex]

Given that,

Velocity of rocket = [tex]+230 m/s[/tex]

Time [tex]= 6.0 s[/tex]

Velocity of expelled gas = -1200 m/s

[tex]Fuel[/tex] [tex]= 1000 Kg[/tex]

a). Rocket's velocity

[tex]v = v_{0} - v_{ex.}[/tex] [tex].In. m/m_{o}[/tex]

[tex]= 230 m/s - (1200 m/s) . In 14000/15000[/tex]

[tex]=[/tex] [tex]312.791 m/s[/tex]

b). Acceleration

[tex]a = v_{ex}/m_{o} . dm/dt[/tex]

[tex]a = 1200/15000 . 1000/6[/tex]

∵ [tex]a =[/tex] [tex]13.33 m/s^2[/tex]

Learn more about "Velocity" here:

brainly.com/question/18084516