evaluate g(p)•h(p) by modeling or by using the distribution property
g(p) = (p-2) and h(p) = (p3

[tex]g(p) \cdot h(p) = p^{4}+2 p^{3}-8 p^{2}-2p+4[/tex]
Solution:
Given data:
[tex]g(p)=(p-2)[/tex] and [tex]h(p)=\left(p^{3}+4 p^{2}-2\right)[/tex]
To find [tex]g(p) \cdot h(p)[/tex]:
[tex]g(p) \cdot h(p)= (p-2)\cdot \left(p^{3}+4 p^{2}-2\right)[/tex]
Distributive property: [tex]a(b+c)=ab + ac[/tex]
[tex]= p\left(p^{3}+4 p^{2}-2\right) -2\left(p^{3}+4 p^{2}-2\right)[/tex]
[tex]= \left(p^{4}+4 p^{3}-2p\right) +\left(-2p^{3}-8 p^{2}+4\right)[/tex]
[tex]= p^{4}+4 p^{3}-2p-2p^{3}-8 p^{2}+4[/tex]
Arrange and add/subtract same powers.
[tex]= p^{4}+(4 p^{3}-2p^{3})-8 p^{2}-2p+4[/tex]
[tex]= p^{4}+2 p^{3}-8 p^{2}-2p+4[/tex]
Hence [tex]g(p) \cdot h(p) = p^{4}+2 p^{3}-8 p^{2}-2p+4[/tex]