Suppose a 250.0 mL flask is filled with 1.3 mol of I2 and 1.0 mol of HI. The following reaction becomes possible:
H2 (g) +I2 (g) ⇆ 2HI (g)
The equilibrium constant for this reaction is 0.983 at the temperature of the flask.
Calculate the equilibrium molarity of HI. Round your answer to two decimal places.

Respuesta :

Answer:

2.27 M

Explanation:

Given that :

volume = 250.0 mL = 0.250 L

Number of moles of [tex]I_2[/tex] = 1.3 mol

Number of moles of [tex]HI[/tex] = 1.0 mole

Initial concentration of  [tex]I_2[/tex] = [tex]\frac{numbers of mole}{volume}[/tex]

= [tex]\frac{1.3}{0.250}[/tex]

= 5.20 M

Initial concentration of  [tex]HI[/tex] = [tex]\frac{numbers of mole}{volume}[/tex]

= [tex]\frac{1.0}{0.250}[/tex]

= 4.0 M

Equation of the reaction is represented as:

[tex]H_2}_{(g)} + I_2_{(g)}----->2HI_{(g)}[/tex]

The I.C.E Table is as follows:

                            [tex]H_2}_{(g)}[/tex]    +        [tex]I_2_{(g)}[/tex]     ----->       [tex]2HI_{(g)}[/tex]

Initial(M)                  0.0              5.20                   4.0  

Change                    +x               +x                       - 2x

Equilibrium(M)           x             5.20+x                 4 - 2x

[tex]K = \frac{[HI]^2}{[H_2][I_2]}[/tex]

[tex]K = \frac{[4-2x]^2}{[x][5.20+x]}[/tex]              where K = 0.983

[tex]0.983 = \frac{(4-2x)^2}{(5.20x+x^2)}[/tex]

[tex]0.983(5.20x+x^2) = (4-2x)^2[/tex]

[tex]5.1116x + 0.983x^2=16-16x+4x^2[/tex]

[tex]5.1116x +16x + 0.983x^2 -4x^2 -16 =0[/tex]

[tex]21.1116x - 3.017x^2 -16 =0[/tex]

multiplying through by (-) and rearranging in the order of quadratic equation; we have:

[tex]3.017x^2 -21.1116x +16[/tex]

[tex]x^2 - 6.9975+5.30 =0[/tex]

using the quadratic formula:

= [tex]\frac{-b \pm\sqrt{b^2-4ac} }{2a}[/tex]

= [tex]\frac{-(-6.9975) \pm\sqrt{(-6.9975)^2-4(1)(5.3)} }{2(1)}[/tex]

=  [tex]\frac{-(-6.9975) + \sqrt{(-6.9975)^2-4(1)(5.3)} }{2(1)}[/tex]   OR  [tex]\frac{-(-6.9975) - \sqrt{(-6.9975)^2-4(1)(5.3)} }{2(1)}[/tex]

= 6.133      OR      0.864

since 6.133 is greater than K value then it is void, so we go by the lesser value which is 0.864

so x = 0.864 M

The equilibrium molarity of HI = (4.0- 2x)

= 4.0 - 2(0.864)

= 4.0 - 1.728

= 2.272 M

= 2.27 M to two decimal places