Given the equation y ln(x^2 + y^4 + 5) = 8, evaluate dy/dx. Assume that the equation implicitly defines y as a differentiable function of x. Choose the correct answer below. dy/dx = -2yx/(x^2 + y^4 + 5) ln (x^2 + y^4 + 5) + 4y^4 dy/dx = 8y ln (x^2 + y^4 + 5)/8(x^2 + y^4 + 5) + 4y^5 dy/dx = -x/2y^3 dy/dx = -2xy^2 - 4y^5/8 ln (x^2 + y^4 + 5)

Respuesta :

Answer:

[tex]\frac{dy}{dx} = - \frac{2\cdot x \cdot y}{(x^{2}+y^{4}+5)\cdot \ln(x^{2}+y^{4}+5)+4\cdot y^{4}}[/tex]

Step-by-step explanation:

The implicite derivative of the function is:

[tex]\frac{dy}{dx}\cdot \ln (x^{2}+y^{4}+5) + \frac{y}{(x^{2}+y^{4}+5)}\cdot (2\cdot x + 4\cdot y^{3}\cdot \frac{dy}{dx} )=0[/tex]

[tex]\frac{dy}{dx}\cdot(x^{2}+y^{4}+5)\cdot \ln (x^{2}+y^{4}+5)+y\cdot (2\cdot x+4\cdot y^{3}\cdot \frac{dy}{dx} )= 0[/tex]

[tex][(x^{2}+y^{4}+5)\cdot \ln(x^{2}+y^{4}+5)+4\cdot y^{4}]\cdot \frac{dy}{dx} + 2\cdot x \cdot y = 0[/tex]

[tex]\frac{dy}{dx} = - \frac{2\cdot x \cdot y}{(x^{2}+y^{4}+5)\cdot \ln(x^{2}+y^{4}+5)+4\cdot y^{4}}[/tex]