Respuesta :

[tex]a_n=a_{n-1}+7\\\\a_1=-4\\a_2=-4+7=3\\a_3=3+7=10\\a_4=10+7=17\\a_5=17+7=24\\a_6=24+7=31[/tex]

Answer:

first six terms are -4, 3, 10, 17, 24 ,31

Step-by-step explanation:

The given first term and recurrence relation is [tex]a_1 = -4, \; a_n = a_{n-1} +7[/tex]

we need to find first six term of this recurrence relation

[tex]a_1 = -4[/tex]

put n=2 in [tex]a_n = a_{n-1} +7[/tex]

[tex]a_2 = a_{2-1} +7[/tex]

[tex]a_2 = a_1 +7[/tex]

since, [tex]a_1 = -4[/tex]

[tex]a_2 = -4 +7[/tex]

[tex]a_2 = 3[/tex]

similarly,

for n=3

[tex]a_3 = a_{3-1} +7[/tex]

[tex]a_3 = a_2 +7[/tex]

since, [tex]a_2 = 3[/tex]

[tex]a_3 = 3 +7[/tex]

[tex]a_3 = 10[/tex]

For n=4

[tex]a_4 = a_{4-1} +7[/tex]

[tex]a_4 = a_3 +7[/tex]

since, [tex]a_3 = 10[/tex]

[tex]a_4 = 10 +7[/tex]

[tex]a_4 = 17[/tex]

For n=5

[tex]a_5 = a_{5-1} +7[/tex]

[tex]a_5 = a_4 +7[/tex]

since, [tex]a_4 = 17[/tex]

[tex]a_5 = 17 +7[/tex]

[tex]a_5 = 24[/tex]

For n=6

[tex]a_6 = a_{6-1} +7[/tex]

[tex]a_6 = a_5 +7[/tex]

since, [tex]a_5 = 24[/tex]

[tex]a_6 = 24 +7[/tex]

[tex]a_6 = 31[/tex]

Hence, first six terms are -4, 3, 10, 17, 24 ,31