Respuesta :
Answer:
The correct option is 3.
Step-by-step explanation:
It is given that the line of best fit passes through the y-axis at 6 and through the point (4,3).
If a line passes through two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], then the equation of line is
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
The line passes through the points (0,6) and (4,3). So, the equation of best line is
[tex]y-6=\frac{3-6}{4-0}(x-0)[/tex]
[tex]y-6=\frac{-3}{4}(x)[/tex]
[tex]y-6=-\frac{3}{4}x[/tex]
Add 6 on both sides.
[tex]y-6+6=-\frac{3}{4}x+6[/tex]
[tex]y=-\frac{3}{4}x+6[/tex]
The equation of line of best fit in slope-intercept form is [tex]y=-\frac{3}{4}x+6[/tex].
Therefore the correct option is 3.