Respuesta :
D[tex] \alpha [/tex]t
D=kt
108=k(4)
108=4k
k=[tex] \frac{108}{4} [/tex]
k=27
The equation connecting D and t is;
D=27t
When t=7,
D=27*7
D= 189
D=kt
108=k(4)
108=4k
k=[tex] \frac{108}{4} [/tex]
k=27
The equation connecting D and t is;
D=27t
When t=7,
D=27*7
D= 189
Answer:
189
Step-by-step explanation:
Given : D varies directly with t and D is 108 when t is 4
To Find: Find D when t is 7
Solution:
D varies directly with t
D ∝ t
So, [tex]D=kt[/tex]
where k is the constant of proportionality
Now we are given that D is 108 when t is 4
So, [tex]108=k(4)[/tex]
[tex]\frac{108}{4}=k[/tex]
[tex]27=k[/tex]
Thus the constant of proportionality i.e. k = 27
So, [tex]D=27t[/tex]
Now substitute t = 7
So, [tex]D=27(7)[/tex]
[tex]D=189[/tex]
So, D = 189 when t = 7