Respuesta :

f(x) = 1 – x

f(i) = 1 - i

 |f(i)| = √(1² + (-1)²) = √(1 + 1) = √2

Answer:

If f(x) = 1 – x then, value of |f(i)| is:

√2

Step-by-step explanation:

f(x) = 1 – x

Then, f(i) = 1 - i

We know that if f(z)=x+iy then, |f(z)|=[tex]\sqrt{x^2+y^2}[/tex]

Hence,  |f(i)| = [tex]\sqrt{1^2+(-1)^2}[/tex]

                    = [tex]\sqrt{1+1}[/tex]

                    = √2

Hence, if f(x) = 1 – x then, value of |f(i)| is:

√2