A graduated cylinder is half full of mercury and half full of water. Assume the height of the cylinder is 0.23 m and don't forget about atmospheric pressure. Calculate the pressure at the bottom of a graduated cylinder. (Provide answer to 3 significant digits.)

Respuesta :

Answer:

[tex] P_{tot}= 101325 Pa + 13600 \frac{Kg}{m^3} *9.8 \frac{m}{s^2} *0.23m [/tex]

[tex] P_{tot}= 131979.4 Pa *\frac{1Kpa}{1000Pa}= 131.9794 Kpa[/tex]

And using 3 significant digits we got [tex]P_{tot}\approx 132 Kpa[/tex]

Explanation:

For this case we have a cylinder with a height of h =0.23 m

We want to calculate the bottom presure at the bttom of the graduated cylinder, and the formula for the total pressure would be given by:

[tex] P_{tot}= P_{atm} + \rho_{Hg} g h[/tex]

For this case we have the following info:

[tex]\rho_{Hg} = 13600 \frac{Kg}{m^3}[/tex] the density for the mercury

[tex] h =0.23 m[/tex] the heigth of the cylinder

[tex] g = 9.8 \frac{m}{s^2}[/tex] represent the gravity

[tex] P_{atm}= 101325 Pa[/tex] the atmospheric pressure assumed.

And replacing we got:

[tex] P_{tot}= 101325 Pa + 13600 \frac{Kg}{m^3} *9.8 \frac{m}{s^2} *0.23m [/tex]

[tex] P_{tot}= 131979.4 Pa *\frac{1Kpa}{1000Pa}= 131.9794 Kpa[/tex]

And using 3 significant digits we got [tex]P_{tot}\approx 132 Kpa[/tex]

Answer:

[tex]P = 117.791\,kPa[/tex]

Explanation:

The absolute pressure at the bottom of the cylinder is:

[tex]P = P_{atm} + P_{man}[/tex]

[tex]P = 101.325\,Pa + (1000\,\frac{kg}{m^{3}}+13600\,\frac{kg}{m^{3}} )\cdot (9.807\,\frac{m}{s^{2}} )\cdot (0.115\,m)[/tex]

[tex]P = 117790.953\,Pa[/tex]

[tex]P = 117.791\,kPa[/tex]