Respuesta :

Given:

From the figure, the sides are (2x + 5), (x + 12), (y - 4) and (x + 5)

The sides having lengths (2x + 5) and (x + 12) are equal.

The sides having lengths (y - 4) and (x + 5) are equal.

We need to solve the given figure.

Value of x:

Let us determine the value of x.

Equating the two sides having equal lengths (2x + 5) and (x + 12), we get;

[tex]2x+5=x+12[/tex]

 [tex]x+5=12[/tex]

       [tex]x=7[/tex]

Thus, the value of x is 7.

Value of y:

The value of y can be determined by equating the two sides (y - 4) and (x + 5) having equal lengths.

Thus, we have;

[tex]y-4=x+5[/tex]

Substituting x = 7, we get;

[tex]y-4=7+5[/tex]

     [tex]y=7+5+4[/tex]

     [tex]y=16[/tex]

Thus, the value of y is 16.

Side lengths of the figure:

The side lengths can be determined by substituting the values of x and y.

Thus, we have;

[tex]2x+5=2(7)+5=19[/tex]

[tex]x+12=7+12=19[/tex]

 [tex]x+5=7+5=12[/tex]

 [tex]y-4=16-4=12[/tex]

Thus, the lengths of the figure are 19, 19, 12, 12.

Answer:

x = 7

y = 16

Step-by-step explanation:

2x + 5 = x + 12

x = 7

y - 4 = 7 + 5

y = 12 + 4

y = 16