contestada

In the right triangle shown, m\angle V = 60\degreem∠V=60°m, angle, V, equals, 60, degree and UV= 18UV=18U, V, equals, 18.

Respuesta :

Answer:

Problem 1)

[tex]m\angle T=30^o[/tex]

[tex]TU=18\sqrt{3}\ units[/tex]

[tex]TV=36\ units[/tex]

Problem 2)

[tex]m\angle U=30^o[/tex]

[tex]TU=9\sqrt{3}\ units[/tex]

[tex]TV=9\ units[/tex]

Step-by-step explanation:

I will analyze two cases

see the attached figure to better understand the problem

Problem 1

Solve the right triangle TUV

The right angle is ∠U

so

[tex]m\angle U=90^o[/tex]

[tex]m\angle V=60^o[/tex]

step 1

Find the measure of angle T

we know that

[tex]m\angle V+m\angle T=90^o[/tex] ---> by complementary angles in a right triangle

substitute the given value

[tex]60^o+m\angle T=90^o[/tex]

[tex]m\angle T=90^o-60^o=30^o[/tex]

step 2

Find the length side TU

we know that

In the right triangle TUV

[tex]tan(60^o)=\frac{TU}{UV}[/tex] ---> by TOA (opposite side divided by adjacent side)

we have

[tex]tan(60^o)=\sqrt{3}[/tex]

[tex]UV=18\ units[/tex]

substitute the given values

[tex]\sqrt{3}=\frac{TU}{18}[/tex]

[tex]TU=18\sqrt{3}\ units[/tex]

step 3

Find the length side TV

we know that

In the right triangle TUV

[tex]cos(60^o)=\frac{UV}{TV}[/tex] ---> by CAH (adjacent side divided by the hypotenuse)

we have

[tex]cos(60^o)=\frac{1}{2}[/tex]

[tex]UV=18\ units[/tex]

substitute the given values

[tex]\frac{1}{2}=\frac{18}{TV}[/tex]

[tex]TV=36\ units[/tex]

Problem 2

Solve the right triangle TUV

The right angle is ∠T

so

[tex]m\angle T=90^o[/tex]

[tex]m\angle V=60^o[/tex]

step 1

Find the measure of angle U

we know that

[tex]m\angle V+m\angle U=90^o[/tex] ---> by complementary angles in a right triangle

substitute the given value

[tex]60^o+m\angle U=90^o[/tex]

[tex]m\angle U=90^o-60^o=30^o[/tex]

step 2

Find the length side TU

we know that

In the right triangle TUV

[tex]sin(60^o)=\frac{TU}{UV}[/tex] ---> by SOH (opposite side divided by hypotenuse)

we have

[tex]sin(60^o)=\frac{\sqrt{3}}{2}[/tex]

[tex]UV=18\ units[/tex]

substitute the given values

[tex]\frac{\sqrt{3}}{2}=\frac{TU}{18}[/tex]

[tex]TU=9\sqrt{3}\ units[/tex]

step 3

Find the length side TV

we know that

In the right triangle TUV

[tex]cos(60^o)=\frac{TV}{UV}[/tex] ---> by CAH (adjacent side divided by the hypotenuse)

we have

[tex]cos(60^o)=\frac{1}{2}[/tex]

[tex]UV=18\ units[/tex]

substitute the given values

[tex]\frac{1}{2}=\frac{TV}{18}[/tex]

[tex]TV=9\ units[/tex]

Ver imagen calculista