Respuesta :

Answer:

Part 1) [tex]JL=2\sqrt{3}\ units[/tex]

Part 2) Yes, It is a 30-60-90 triangle

Step-by-step explanation:

The picture of the question in the attached figure

Part 1) How long is JL?

we know that

In the right triangle JKL

[tex]tan(60^o)=\frac{JL}{KL}[/tex] ---> by TOA (opposite side divided by adjacent side)

we have

[tex]KL=2\ units[/tex]

[tex]tan(60^o)=\sqrt{3}[/tex]

substitute the given values

[tex]\sqrt{3}=\frac{JL}{2}[/tex]

[tex]JL=2\sqrt{3}\ units[/tex]

Part 2) This is a 30-60-90 triangle?

Find the measure of angle J

we know that

[tex]m\angle K+m\angle J=90^o[/tex] ---> by complementary angles in a right triangle

we have

[tex]m\angle K=60^o[/tex]

substitute

[tex]60^o+m\angle J=90^o[/tex]

[tex]m\angle J=90^o-60^o=30^o[/tex]

therefore

The right triangle JKL is a 30-60-90 triangle

Ver imagen calculista

Answer:

the proof is in the picture

Step-by-step explanation:

Ver imagen copperdog1011