Respuesta :

The given expression can be written as [tex]q^{2} +12q+32[/tex] = (q+8)(q+4).

Step-by-step explanation:

Given,

[tex]q^{2} +12q+32[/tex]

To make it a complete square.

Formula

(a+b)² = [tex]a^{2} +2ab+b^{2}[/tex]

[tex]a^{2} -b^{2} = (a+b)(a-b)[/tex]

Now,

[tex]q^{2} +12q+32[/tex]

= [tex]q^{2} +2.q.6+6^{2} -6^{2} +32[/tex]

= (q+6)²-36+32

= (q+6)²-4

= (q+6)²-2²

= (q+6+2)(q+6-2)

= (q+8)(q+4)

Answer:

(q+6)^2 - 4

Step-by-step explanation: