taijdet
contestada

How many cubes with side lengths of 1/4cm does it take to fill the prism?
Length: 2cm
Width: 7/4cm
Height: 1cm

How many cubes with side lengths of 14cm does it take to fill the prism Length 2cm Width 74cm Height 1cm class=

Respuesta :

Given:

The length of the rectangular prism is 2 cm.

The width of the prism is [tex]\frac{7}{4}[/tex] cm.

The height of the prism is 1 cm.

The side lengths of the cube is [tex]\frac{1}{4}[/tex] cm.

We need to determine the number of cubes with side lengths [tex]\frac{1}{4}[/tex] would fill the prism.

Volume of the cube:

The volume of the cube can be determined using the formula,

[tex]V=s^3[/tex]

Substituting the value, we get;

[tex]V=(\frac{1}{4})^3[/tex]

[tex]V=\frac{1}{64}[/tex]

Thus, the volume of the cube is [tex]\frac{1}{64} \ cm^3[/tex]

Volume of the rectangular prism:

Volume of the rectangular prism can be determined using the formula,

[tex]V=lwh[/tex]

Substituting the values, we get;

[tex]V=2\times \frac{7}{4} \times 1[/tex]

[tex]V=3.5 \ cm^3[/tex]

Thus, the volume of the rectangular prism is 3.5 cm³

Number of cubes:

The number of cubes can be determined by dividing the volume of the prism by the volume of the cube.

Thus, we have;

[tex]No. \ of \ cubes=\frac{3.5}{\frac{1}{64}}[/tex]

[tex]No. \ of \ cubes=3.5 \times 64[/tex]

[tex]No. \ of \ cubes=224[/tex]

Thus, the number of cubes that fill the prism are 224 cubes.