In the figure below, \overline{AC} AC start overline, A, C, end overline and \overline{BE} BE start overline, B, E, end overline are diameters of circle PPP. What is the arc measure of \stackrel{\Huge{\frown}}{DBE} DBE ⌢ D, B, E, start superscript, \frown, end superscript in degrees?

Respuesta :

Answer:

[tex]arc\ DBE=206^o[/tex]

Step-by-step explanation:

The picture of the question in the attached figure

The question is

Find the measure of arc DBE          

step 1

Find the value of k

we know that

[tex]m\angle EPC=90^o[/tex] ----> by quarter of circle

[tex]m\angle EPC=(33k-9)^o[/tex]

so

[tex](33k-9)^o=90^o[/tex]

solve for k

[tex]33k=90+9\\33k=99\\k=3[/tex]

step 2

Find the measure of angle DPC

we know that

[tex]m\angle DPC=(20k+4)^o[/tex]

substitute the value of k

[tex]m\angle DPC=(20(3)+4)=64^o[/tex]

step 3

Find the measure of angle BPD

we know that

[tex]m\angle BPD+m\angle DPC=90^o[/tex] ---> by complementary angles

substitute the given value

[tex]m\angle BPD+64^o=90^o[/tex]

[tex]m\angle BPD=90^o-64^o=26^o[/tex]

step 4

Find the measure of arc DBE

we know that

[tex]arc\ DBE=arc\ DB+arc\ BAE[/tex]

[tex]arc\ DB=m\angle BPD=26^o[/tex] ----> by central angle

[tex]arc\ BAE=180^o[/tex] ---> because a diameter divide the circle into two equal parts (BE is a diameter)

substitute

[tex]arc\ DBE=26^o+180^o=206^o[/tex]

Ver imagen calculista

Answer:

In the figure below, \overline{AC} AC

start overline, A, C, end overline and \overline{BD} BD

start overline, B, D, end overline are diameters of circle PPP.

What is the arc measure of major arc \stackrel{\large{\frown}}{BDC}

BDC⌢ B, D, C, start superscript, \frown, end superscript in degrees?

the answer is 205

Step-by-step explanation: