Respuesta :

Given:

[tex]a=4\sqrt{3}[/tex]

To find:

The area of the figure

Solution:

The given figure is regular hexagon.

Number of sides = 6

Using apothem formula:

[tex]$a=\frac{s}{2 \tan \left(\frac{180^\circ}{n}\right)}[/tex]

where a is apothem, s is side length and n is number of sides of the polygon.

[tex]$4\sqrt{3} =\frac{s}{2 \tan \left(\frac{180^\circ}{6}\right)}[/tex]

Multiply by 2 on both sides.

[tex]$8\sqrt{3} =\frac{s}{ \tan {30^\circ}}[/tex]

[tex]$8\sqrt{3} =\frac{s}{ \frac{1}{\sqrt{3} } }[/tex]

[tex]$8\sqrt{3} =\frac{s{\sqrt{3} }}{ 1 }[/tex]

Cancel the common factor [tex]\sqrt{3}[/tex] on both sides, we get

[tex]8=s[/tex]

Side length of the polygon = 8 units

Area of the polygon:

[tex]$A=\frac{1}{2} \times ( \text {apothem }\times \text{ perimeter})[/tex]

[tex]$A=\frac{1}{2} \times ( 4\sqrt{3} \times 6\times 8)[/tex]

[tex]$A=96\sqrt{3}[/tex]

A = 166.27 in²

The area of the figure is 166.27 in².