Answer:
[tex] Q = m C_p \Delta T = m C_p (T_f -T_i)[/tex]
And we have the following info given:
[tex] m = 13.1 gr *\frac{1Kg}{1000 gr}= 0.0131 Kg[/tex]
[tex] T_f = 38.1 C[/tex] represent the initial temperature
[tex] Q = 30 J[/tex] represent the heat added
From tables for the platinum we know:
[tex] C_p = 150 \frac{J}{Kg K}[/tex]
And if we solve for the initial temperature we got:
[tex] \frac{Q}{m C_p} = T_f -T_i[/tex]
[tex] T_i = T_f - \frac{Q}{m C_p}[/tex]
And replacing we got:
[tex] T_f = 38.1C -\frac{30 J}{0.0131 Kg * 150 \frac{J}{Kg C}}= 22.833 C[/tex]
Explanation:
For this case we can assume that the only mechanism of heat transfer is the associated to the sensible heat given by this formula:
[tex] Q = m C_p \Delta T = m C_p (T_f -T_i)[/tex]
And we have the following info given:
[tex] m = 13.1 gr *\frac{1Kg}{1000 gr}= 0.0131 Kg[/tex]
[tex] T_f = 38.1 C[/tex] represent the initial temperature
[tex] Q = 30 J[/tex] represent the heat added
From tables for the platinum we know:
[tex] C_p = 150 \frac{J}{Kg K}[/tex]
And if we solve for the initial temperature we got:
[tex] \frac{Q}{m C_p} = T_f -T_i[/tex]
[tex] T_i = T_f - \frac{Q}{m C_p}[/tex]
And replacing we got:
[tex] T_f = 38.1C -\frac{30 J}{0.0131 Kg * 150 \frac{J}{Kg C}}= 22.833 C[/tex]