A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially, the mass is released from rest from a point 8 inches above the equilibrium position.

Find the equation of motion. (Use g = 32 ft/s2 for the acceleration due to gravity.)

x(t)= ?

Respuesta :

Answer:

[tex]x(t) = 8\cdot \cos 9.798\cdot t[/tex]

Step-by-step explanation:

The equation of motion for the spring-mass system is:

[tex]x(t) = A\cdot \cos (\omega\cdot t + \phi)[/tex]

Where:

[tex]\omega = \sqrt{\frac{k}{m}}[/tex]

[tex]k[/tex] - Spring constant, in [tex]\frac{lbm}{s^{2}}[/tex].

[tex]m[/tex] - Mass, in [tex]lbm[/tex].

The spring constant is:

[tex]k = \frac{m\cdot g}{\Delta s}[/tex]

[tex]k = \frac{(24\,lbm)\cdot (32\,\frac{ft}{s^{2}} )}{\frac{4}{12} \,ft}[/tex]

[tex]k = 2304\,\frac{lbm}{s^{2}}[/tex]

The angular frequency is:

[tex]\omega = \sqrt{\frac{2304\,\frac{lbm}{s^{2}} }{24\,lbm} }[/tex]

[tex]\omega \approx 9.798\,\frac{rad}{s}[/tex]

The initial condition for the system is:

[tex]x(0) = +8\,in[/tex]

[tex]v(0) = 0\,\frac{in}{s}[/tex]

The function for speed is obtained by deriving the previous function:

[tex]v(t) = -\omega \cdot A\cdot \sin (\omega\cdot t + \phi)[/tex]

The following expressions are formed by substituting all known variables:

[tex]A \cdot \cos \phi = 8\,in[/tex]

[tex]-(9.798\,\frac{rad}{s} )\cdot A \cdot \sin \phi = 0\,\frac{in}{s}[/tex]

The phase angle is found by dividing the initial velocity by the initial position:

[tex]\tan \phi = 0[/tex]

[tex]\phi = 0\,rad[/tex]

The amplitude is:

[tex]A = 8\,in[/tex]

The equation of motion is:

[tex]x(t) = 8\cdot \cos 9.798\cdot t[/tex]