In cyclic quadrilateral PQRS,
[tex]\[\frac{\angle P}{2} = \frac{\angle Q}{3} = \frac{\angle R}{4}.\][/tex]
Find the largest angle of quadrilateral PQRS, in degrees.

Respuesta :

The largest angle of the quadrilateral PQRS is 120°

Step-by-step explanation:

Given that

[tex]\frac{\angle P}{2} =\frac{\angle Q}{3}=\frac{\angle R}{4}[/tex]

3P=2Q   (1)

4Q=3R

Q=3R/4

Substitute the value of <Q in (1)

[tex]3P=2(\frac{3R}{4} )=\frac{3R}{2} \\6P=3R\ -->(2)[/tex]

<P=3R/6=R/2

Comparing (1) and (2)

we get 6P=4Q=3R

In a cyclic quadrilateral, opposite angles are supplementary i.e their sum is 180 degree

<P and <R are opposite angles.

Hence [tex]<P+<R=180\°[/tex]

<R/2+<R=180

[tex]\frac{3R}{2} =180\\R=120\°\\<P=R/2=120/2=60\°[/tex]

[tex]<Q=\frac{3R}{4} =\frac{3\times 120}{4} =90\°[/tex]

<S and <Q are opposite angles. Hence

<S=180-<Q=180-90=90°

<P=60°

<Q=90°

<R=120°

<S=90°

The largest angle of the quadrilateral is 120°(<R)