Respuesta :
Answer:
a= -1
b= -9
c=9
d=3
e=3
f=2
[tex]g=\frac32[/tex]
Step-by-step explanation:
Rule of sign:
- (-)×(+)=(-), (-)÷(+)=(-)
- (+)×(-)=(-) , (+)÷(-)=(-)
- (+)×(+)=(+), (+)÷(+)=+
- (-)×(-)=(+), (-)÷(-)=(+)
Given that,
[tex]\frac{3x}{2x-6}+\frac{9}{6-2x}[/tex]
We can rewrite 6-2x as 2x-6, taking (-1) as common factor of (6-2x)
[tex]=\frac{3x}{(2x-6)}+\frac{9}{-1(2x-6)}[/tex]
So, a= -1
[tex]\frac9{-1}=-9[/tex]
[tex]=\frac{3x}{(2x-6)}+\frac{-9}{(2x-6)}[/tex]
So, b= -9
The L.C.M of (2x-6) and (2x-6) is (2x-6)
and (2x-6)÷(2x-6)=1
[tex]=\frac{1 \times 3x+1\times (-9)}{(2x-6)}[/tex]
[tex]=\frac{( 3x-9)}{(2x-6)}[/tex]
∴c= 9
(3x-9) has a common factor 3 and (2x-6) has a common factor 2.
(3x-9)=3(x-3)
(2x-6)=2(x-3)
[tex]=\frac{3(x-3)}{2(x-3)}[/tex]
∴d=3, e=3 and f=2
Since the denominator and numerator are the product of two polynomial. So, if there is any common element, then can cancel the common factor.
Here the common factor is (x-3). So cancel out (x-3).
[tex]=\frac32[/tex]
[tex]\therefore g=\frac32[/tex]
Answer:
A= -1
B=-9
C=9
D=3
E=3
F=2
G=1.5
On edge
Step-by-step explanation: