Part 2: Use the information provided to write the standard form equation of each circle


4. Center: (8, -4), Radius: [tex]\sqrt{118}[/tex]


5. Center: (-10, 9), Radius: [tex]\sqrt{37}[/tex]


6. Center: (-8, 0), Radius: 6

Respuesta :

Answer:

The answer to your question is below

Step-by-step explanation:

- The Standard form of the equation is

                  (x - h)² + (y - k)² = r²

4.

Center (8, -4)    r = [tex]\sqrt{118}[/tex]

-Substitution

                 (x - 8)² + (y + 4)² =[tex]\sqrt{118}[/tex]²                

-Result

                 (x - 8)² + (y + 4)² = 118

5.

Center (-10, 9)     r = [tex]\sqrt{37}[/tex]

-Substitution

                  (x + 10)² + (y - 9)² = [tex]\sqrt{37}[/tex]²                

-Result

                  (x + 10)² + (y - 9)² = 37

6.-

Center (-8, 0)       r = 6

-Substitution

                  (x + 8)² + (y - 0)² = (6)²

-Result

                  (x + 8)² + (y - 0)² = 36

Answer:

4. (x - 8)² + (y + 4)² = 118

5. (x + 10)² + (y - 9)² = 37

6. (x + 8)² + y² = 36

Step-by-step explanation:

Equation of a circle:

(x - h)² + (y - k)² = r²

4. Center: (8, -4), Radius: sqrt{118}

(x - 8)² + (y - (-4))² = (sqrt(118))²

(x - 8)² + (y + 4)² = 118

5. Center: (-10, 9), Radius: sqrt{37}

(x - (-10))² + (y - 9)² = (sqrt(37))²

(x + 10)² + (y - 9)² = 37

6. Center: (-8, 0), Radius: 6

(x - (-8))² + (y - 0)² = 6²

(x + 8)² + y² = 36