Respuesta :
Answer:
9. [tex]\displaystyle (x - 7)^2 + (y - 15)^2 = 25[/tex]
8. [tex]\displaystyle (x - 1)^2 - (y - 10)^2 = 49[/tex]
7. [tex]\displaystyle (x + 5)^2 + (y + 19)^2 = 9[/tex]
Step-by-step explanation:
[tex]\displaystyle [x - h]^2 - [y - k]^2 = r^2 → Hyperbola\:Equation \\ [x - h]^2 + [y - k]^2 = r^2 → Circle\:Equation \\ [h, k] → Centre[/tex]
According to the equations in the exercises, in the parentheses, ALL NEGATIVE SIGNS give the OPPOSITE terms of what they REALLY are, so be EXTREMELY CAREFUL with your translations:
9. [4, 11]
+ 3 + 4
_____
[7, 15] → (x - 7)² and (y - 15)²
8. [−2, 8]
+ 3 + 2
_____
[1, 10] → (x - 1)² and (y - 10)²
7. [−8, −14]
+ 3 - 5
______
[−5, −19] → (x + 5)² and (y + 19)²
** NOTISE THAT THE RADII NEVER ALTER.
I am joyous to assist you anytime.
Answer:
7. (x + 5)² + (y + 14)² = 9
8. (x - 1)² + (y - 10)² = 49
9. (x - 7)² + (y - 15)² = 25
Step-by-step explanation:
7. (x + 8)^2 + (y + 14)^2 = 9
Centre: (-8,-14)
Translated 3 right, 5 down
Centre: (-5,-19)
(x - (-5))² + (y - (-14))² = 9
(x + 5)² + (y + 14)² = 9
8. (x + 2)^2 - (y - 8)^2 = 49
Centre: (-2,8)
Translated 3 right, 2 up
Centre: (1,10)
(x - 1)² + (y - 10)² = 49
9. (x - 4)^2 + (y - 11)^2 = 25
Centre: (4,11)
Translated 3 right, 4 up
Centre: (7,15)
(x - 7)² + (y - 15)² = 25