Respuesta :
L[ y(t) ] = Y(s)
L[ y' ] = sY-y(0) = sY-0 = sY
L[ y'' ] = s^2*Y - sy(0) - y'(0) = s^2*Y - 1
laplace trasform both sides
L[ y'' - 6y' + 9y ] = L[ t ]
= L[ y'' ] - 6 L[ y' ] + 9 L[ y ] = 1/s
= [ s^2*Y - 1 ] - 6[ sY ] + 9Y = 1/s
( s^2 - 6s + 9 ) Y - 1 = 1/s
⇒ ( s^2 - 6s + 9 ) Y = (1/s) + 1
⇒Y = [ 1 / ( s(s^2 - 6s + 9 ) ) ] + [ 1 / ( s^2 - 6s + 9 ) ]
Let inverse laplace trasform , find y(t) :
y(t) = L^(-1)[ Y(s) ] = L^(-1) { [ 1 / ( s(s^2 - 6s + 9 ) ) ] + [ 1 / ( s^2 - 6s + 9 ) ] }
= [ (1/3)*t*e^(3t) - (1/9)*e^(3t) + (1/9) ] + [ t*e^(3t) ]
= (4/3)*t*e^(3t) - (1/9)*e^(3t) + (1/9)
L[ y' ] = sY-y(0) = sY-0 = sY
L[ y'' ] = s^2*Y - sy(0) - y'(0) = s^2*Y - 1
laplace trasform both sides
L[ y'' - 6y' + 9y ] = L[ t ]
= L[ y'' ] - 6 L[ y' ] + 9 L[ y ] = 1/s
= [ s^2*Y - 1 ] - 6[ sY ] + 9Y = 1/s
( s^2 - 6s + 9 ) Y - 1 = 1/s
⇒ ( s^2 - 6s + 9 ) Y = (1/s) + 1
⇒Y = [ 1 / ( s(s^2 - 6s + 9 ) ) ] + [ 1 / ( s^2 - 6s + 9 ) ]
Let inverse laplace trasform , find y(t) :
y(t) = L^(-1)[ Y(s) ] = L^(-1) { [ 1 / ( s(s^2 - 6s + 9 ) ) ] + [ 1 / ( s^2 - 6s + 9 ) ] }
= [ (1/3)*t*e^(3t) - (1/9)*e^(3t) + (1/9) ] + [ t*e^(3t) ]
= (4/3)*t*e^(3t) - (1/9)*e^(3t) + (1/9)
Hello,
I am going to try.
A particular solution is y=pt+q ,y'=p, y"=0
t=y"-6y'+9y=0-6p+9(pt+q)==>9pt+9q-6p=t
==>9p=1 ==>p=1/9
and 9q-6p=0==>-6/9+9q=0==>q=2/27
General solution of the homogene equation
y"-6y'+9y=0
Δ=6²-4*9=0
y=6/2=3
Solution is y=(at+b)e^(3t)
Solution: y=(at+b)e^(3t)+t/9+2/27
y(0)=0 ==>0=b+2/27==>b=-2/27
y'(t)=e^(3t)*3*(at+b)+a e^(3t)
y'(0)=0==>0=3(-2/27)+a==>a=2/9
Solution: y=(2/9t-2/27)e^(3t)+t/9 +2/27
I am going to try.
A particular solution is y=pt+q ,y'=p, y"=0
t=y"-6y'+9y=0-6p+9(pt+q)==>9pt+9q-6p=t
==>9p=1 ==>p=1/9
and 9q-6p=0==>-6/9+9q=0==>q=2/27
General solution of the homogene equation
y"-6y'+9y=0
Δ=6²-4*9=0
y=6/2=3
Solution is y=(at+b)e^(3t)
Solution: y=(at+b)e^(3t)+t/9+2/27
y(0)=0 ==>0=b+2/27==>b=-2/27
y'(t)=e^(3t)*3*(at+b)+a e^(3t)
y'(0)=0==>0=3(-2/27)+a==>a=2/9
Solution: y=(2/9t-2/27)e^(3t)+t/9 +2/27