Respuesta :

Answer:

dy/dx = (sin πx)/(cos πy)

Step-by-step explanation:

(cos πx + sin πy)^(7) = 33

Let's differentiate;

d((cos πx + sin πy)^(7))/dx = d(33)/dx

Now, chain rule is;

d(g(h(x, y)))/dx = = (dg/dh) * (dh/dx)

Let h(x, y) = (cos πx + sin πy)

Then;

dh/dx = [-π sin πx + (πcos πy)*dy/dx]

g = h(x, y)^(7)

dg/dh = 7h(x, y)•d((cos πx + sin πy)^(7))/dx = 7h(x, y)•d((cos πx + sin πy)^(7))/dx•[-π sin πx + (πcos πy)*dy/dx]

This gives;

dg/dh = 7(cos πx + sin πy) • [-π sin πx + (πcos πy)*dy/dx]

The right side is just derivative of a constant: so; d(33)/dx = 0

Thus;

7(cos πx + sin πy) • [-π sin πx + (πcos πy)*dy/dx] = 0

Let's solve for dy/dx by opening the brackets;

Divide both sides by 7(cos πx + sin πy) to get;

[-π sin πx + (πcos πy)*dy/dx] = 0

(πcos πy)*dy/dx = π sin πx

dy/dx = (π sin πx)/(πcos πy)

dy/dx = (sin πx)/(cos πy)