Respuesta :

Answer:

y = [tex]\frac{1}{2}[/tex] x² - x + [tex]\frac{7}{2}[/tex]

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

Here (h, k) = (1, 3 ), thus

y = a(x - 1)² + 3

To find a substitute (- 1, 5) into the equation

5 = a(- 1 - 1)² + 3 ( subtract 3 from both sides )

2 = 4a ( divide both sides by 4 )

a = [tex]\frac{1}{2}[/tex] , thus

y = [tex]\frac{1}{2}[/tex] (x - 1)² + 3 ← expand factor using FOIL

y = [tex]\frac{1}{2}[/tex] (x² - 2x + 1) + 3 ← distribute parenthesis

  = [tex]\frac{1}{2}[/tex] x² - x + [tex]\frac{1}{2}[/tex] + 3

  = [tex]\frac{1}{2}[/tex] x² - x + [tex]\frac{7}{2}[/tex]