Respuesta :
Answer:
[tex]x_1 \approx 3.958[/tex]
[tex]x_{2} \approx 0.042[/tex]
[tex]f(x) = (x - 3.958)\cdot (x-0.042)[/tex]
Step-by-step explanation:
The zeros of the quadratic function are obtained after some algebraic manipulation:
[tex]f(x) = 6\cdot x^{2} - 24\cdot x + 1[/tex]
The roots of the second order polynomial are, respectively:
[tex]x_{1,2} = \frac{24 \pm \sqrt{576-4\cdot (6)\cdot (1)}}{2\cdot (6)}[/tex]
[tex]x_{1,2} \approx 2 \pm 1.958[/tex]
[tex]x_1 \approx 3.958[/tex]
[tex]x_{2} \approx 0.042[/tex]
[tex]f(x) = (x - 3.958)\cdot (x-0.042)[/tex]
Answer:
x1 = 3.95
x2= 0.0425
Step-by-step explanation:
Hi, to answer this question we have to apply the quadratic formula:
For: ax2+ bx + c
x =[ -b ± √b²-4ac] /2a
Replacing with the values given:
x =[ -(-24) ± √(-24)²-4(6)1] /2(6)
x = [ 24 ± √576 -24] /12
x = [ 24 ± √552] /12
x = [ 24 ± 23.49] /12
Positive:
x = [ 24 + 23.49] /12 = 47.49 /12 = 3.95
Negative:
x = [ 24 - 23.49] /12 = 0.51 /12 = 0.0425
Feel free to ask for more if needed or if you did not understand something.