A 2.06 μF capacitor is charged to 1200 V and a 4.66 μF capacitor is charged to 530 V. These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each?Tries 0/7What will be the charge on the 2.06 μF capacitor?Tries 0/7What will be the charge on the 4.66 μF capacitor?

Respuesta :

Answer:

The potential difference across each is  [tex]V = V_1 ''=V_2 '' = 818.45\ V[/tex]

The charge on 2.06 μF is  [tex]Q_1 '' = 0.00169 \ C[/tex]

The charge on 4.66 μF is  [tex]Q_2 '' = 0.00381 \ C[/tex]

Explanation:

From the question we are told that

     The capacitance of the first capacitor is  [tex]C_1 = 2.60 \mu F = 2.60*10^{-6} \ F[/tex]

      The voltage across first capacitor is [tex]V_1 = 1200 V[/tex]

        The voltage across second  capacitor is [tex]V_2 = 530 V[/tex]

       The capacitance of the first capacitor is  [tex]C_2 = 4.66 \mu F = 4.66 *10^{-6} \ F[/tex]

The charge on the first capacitor is

                        [tex]Q_1 = C_1 V_1[/tex]

So                   [tex]Q_1 = 2.50 *10^{-6} * 1200[/tex]

                       [tex]Q_1 = 0.003 C[/tex]

The charge on the second  capacitor is

                     [tex]Q_2 = C_2 V_2[/tex]

So                 [tex]Q_2 = 4.66 *10^{-6} * 530[/tex]

                    [tex]Q_2 = 0.0025 \ C[/tex]

The capacitance for the connected capacitors is

              [tex]C_T = C_1 +C_2[/tex]

So           [tex]C_T = 2.06 \mu F + 4.66 \mu F[/tex]

               [tex]C_T = 6.72 \mu F[/tex]

The charge on the connected capacitors  is

           [tex]Q_T = Q_1 + Q_2[/tex]

So         [tex]Q_T = 0.003 + 0.0025[/tex]

             [tex]Q_T = 0.0055 \ C[/tex]

The voltage across the first capacitor after connection is

            [tex]V_1 '' = \frac{Q_T}{C_T}[/tex]

           [tex]V_1 '' = \frac{0.0055}{6.72*10^{-6}}[/tex]

           [tex]V_1 '' = 818.45\ V[/tex]

The voltage across the second  capacitor after connection is  

           [tex]V_2 '' = \frac{Q_T}{C_T}[/tex]

           [tex]V_2 '' = \frac{0.0055}{6.72*10^{-6}}[/tex]

           [tex]V_2 '' = 818.45\ V[/tex]

The charge on the first capacitor after connection is

         [tex]Q_1 '' = C_1 V_1''[/tex]

So    [tex]Q_1 '' = 2.06 *10^{-6} * 818.45[/tex]

        [tex]Q_1 '' = 0.00169 \ C[/tex]

The charge on the second  capacitor after connection is

             [tex]Q_2 '' = C_2 V_2''[/tex]

So         [tex]Q_1 '' = 4.66 *10^{-6} * 818.45[/tex]

        [tex]Q_2 '' = 0.00381 \ C[/tex]