Graph a parabola whose xxx-intercepts are at x=-3x=−3x, equals, minus, 3 and x=5x=5x, equals, 5 and whose minimum value is y=-4y=−4y, equals, minus, 4.

Respuesta :

Answer:

Vertex: (1, -4)

intercept: (-3, 0)

Step-by-step explanation:

lets be real, you don't care about an explanation you just want the answer.

BUT... the vertex is the Y line and the Intercept is the X line

 

 

 

 

 

 

 

 

 

 

 

 

The equation of a parabola is represented as [tex]\mathbf{y = a(x - h)^2 + k}[/tex]

See attachment for the graph of [tex]\mathbf{y = \frac 14(x - 1)^2 - 4}[/tex]

The given parameters are:

[tex]\mathbf{x\ intercept = -3,5}[/tex]

[tex]\mathbf{y_{min} = -4}[/tex]

Calculate the mean of the x-intercepts, to get the minimum x-value.

So, we have:

[tex]\mathbf{x_{min} = \frac{-3 + 5}{2}}[/tex]

[tex]\mathbf{x_{min} = \frac{2}{2}}[/tex]

[tex]\mathbf{x_{min} = 1}[/tex]

So, the coordinates are:

[tex]\mathbf{(x,y) = (-3,0)\ (5,0)}[/tex]

[tex]\mathbf{(h,k) = (1,-4)}[/tex] --- vertex

Recall that, the equation of a parabola is:

[tex]\mathbf{y = a(x - h)^2 + k}[/tex]

Substitute [tex]\mathbf{(h,k) = (1,-4)}[/tex] and [tex]\mathbf{(x,y) = (-3,0)}[/tex] in [tex]\mathbf{y = a(x - h)^2 + k}[/tex]

[tex]\mathbf{0 = a(-3 - 1)^2 -4}[/tex]

[tex]\mathbf{0 = 16a -4}[/tex]

Add 4 to both sides

[tex]\mathbf{16a =4}[/tex]

Divide both sides by 4

[tex]\mathbf{a =\frac 14}[/tex]

Substitute [tex]\mathbf{(h,k) = (1,-4)}[/tex] and [tex]\mathbf{a =\frac 14}[/tex] in [tex]\mathbf{y = a(x - h)^2 + k}[/tex]

[tex]\mathbf{y = \frac 14(x - 1)^2 - 4}[/tex]

See attachment for the graph of the equation

Read more about parabolas at:

https://brainly.com/question/4074088

Ver imagen MrRoyal