Respuesta :
Answer:
[tex]10x^4 \sqrt{6} + x^3\sqrt{30x} - 10x^4\sqrt{3} - x^3\sqrt{15x}[/tex]
Step-by-step explanation:
Given the product:
[tex](\sqrt{10x^4} - x\sqrt{5x^2}) (2\sqrt{15x^4} + \sqrt{3x^3})[/tex]
Applying distributive property:
[tex]2\sqrt{150x^8} + \sqrt{30x^7} - 2x\sqrt{75x^6} - x\sqrt{15x^5}[/tex]
[tex]2\sqrt{25 \cdot 6} \sqrt{x^8} + \sqrt{30x} \sqrt{x^6} - 2x\sqrt{25 \cdot 3} \sqrt{x^6} - x\sqrt{15x} \sqrt{x^4}[/tex]
[tex]10x^4 \sqrt{6} + x^3\sqrt{30x} - 10x^4\sqrt{3} - x^3\sqrt{15x}[/tex]
Answe4
Given the product:
Applying distributive property:
Step-by-step explanation: