The inhabitants of a distant planet, Altair IV, wish to launch their first satellite. The radius of Altair IV is 7.2 x 106 m, and its mass is 1.3 x 1025 kg. The satellite has a mass of 90 kg. Please answer each of the following questions. a) If the satellite is placed in an orbit 400 km above the surface, what is its orbital period? b) What is the kinetic energy of the satellite in this orbit?

Respuesta :

Answer:

a) 1.24 h

b) [tex]5.132 \times 10^{9} J[/tex]

Explanation:

a) The gravitational force of attraction between satellite and the planet,

which provides centripetal force to keep satellite in circular orbit

[tex]\frac{G M_{p} m}{(R+h)^{2}} &=\frac{m v^{2}}{(R+h)}[/tex]

[tex]v =\sqrt{\frac{G M_{p}}{R+h}}[/tex]

[tex]=\sqrt{\frac{\left(6.67 \times 10^{-11} N \cdot m ^{2} / kg ^{2}\right)\left(1.3 \times 10^{25} kg \right)}{7.2 \times 10^{6} m +400 \times 10^{3} m }}[/tex]  

[tex]=1.068 \times 10^{4} m / s[/tex]        .......(i)

The expression for time period of the satellite is,

[tex]T=\frac{2 \pi(R+h)}{v}[/tex]

[tex]=\frac{2 \pi\left(7.2 \times 10^{6} m +400 \times 10^{3} m \right)}{1.068 \times 10^{4} m / s }[/tex]

[tex]=4468.9 s \left(\frac{1.0 h }{3600 s }\right)[/tex]

[tex]=1.24 h[/tex]

b) We have from (i) velocity of the satellite as

[tex]v=1.068 \times 10^{4} m / s[/tex]

Kinetic energy of the satellite is,

[tex]K E &=\frac{1}{2} m v^{2}[/tex]

[tex]=\frac{1}{2}(90 kg )\left(1.068 \times 10^{4} m / s \right)^{2}[/tex]

[tex]=5.132 \times 10^{9} J[/tex]