Answer:
Feed 1, Soybean meal required = [tex]\dfrac{2000}{3} \text{ lbs.}[/tex]
Feed 2, Corn meal required = [tex]\dfrac{4000}{3} \text{ lbs.}[/tex]
Step-by-step explanation:
Total feed is 1 ton i.e. 2000 lbs.
Let x be the amount of Feed 1 required.
Feed 1 has [tex]45\%[/tex] of protein.
[tex]\text{Protein in Feed 1 = }x \times \dfrac{45}{100} ..... (1)[/tex]
Then, amount of Feed 2 required = [tex](2000 - x) \text{ lbs.}[/tex]
Feed 2 has [tex]15\%[/tex] of protein.
[tex]\text{Protein in Feed 2 = }(2000 - x) \times \dfrac{15}{100} ..... (2)[/tex]
As per question, total protein required is [tex]25\%[/tex] of 2000 lbs .
Adding (1) and (2) and putting it equal to total protein required.
[tex]\Rightarrow x \times \dfrac{45}{100} + (2000 - x) \times \dfrac{15}{100} = 2000 \times \dfrac{25}{100}\\\Rightarrow 45x + 30000 - 15x = 50000\\\Rightarrow 30x = 20000\\\Rightarrow x = \dfrac{2000}{3}[/tex]
Feed 1 required = [tex]\dfrac{2000}{3}\text{ lbs .}[/tex]
Feed 2 required = [tex]2000 - \dfrac{2000}{3}\\[/tex]
[tex]\Rightarrow \dfrac{4000}{3}\text{ lbs.}[/tex]