What is the product? StartFraction x squared minus 16 Over 2 x + 8 EndFraction times StartFraction x cubed minus 2 x squared + x Over x squared + 3 x minus 4 EndFraction

Respuesta :

Answer:

[x(x - 1)(x - 4)]/(2(x + 4))

Step-by-step explanation:

We want to find;

[(x² - 16)/(2x + 8)] * [(x³ - 2x² + x)/(x² + 3x - 4)]

Now,

x² - 16 can be factorized as;

(x + 4)(x - 4)

Also, 2x + 8 can be factorized as;

2(x + 4)

Also, (x³ - 2x² + x) can factorized as;

x[x² - 2x + 1] = x[(x - 1)(x - 1)]

Also,(x² + 3x - 4) can be factorized out as; (x - 1)(x + 4)

So plugging in these factorized forms into the equation in the question, we have;

[(x + 4)(x - 4)/(2(x + 4))] * [x[(x - 1)(x - 1)] /((x - 1)(x + 4))

This gives;

((x - 4)/2) * x(x - 1)/(x +4)

This gives;

[x(x - 1)(x - 4)]/(2(x + 4))

The product of the given expression is [tex]\dfrac{x(x-1)(x-4)}{2(x+4)}[/tex] and this can be determined by using the factorization method.

Given :

[tex]\rm Expression \;\;- \;\; \dfrac{(x^2-16)}{(2x+8)}\times \dfrac{(x^3-2x^2+x)}{(x^2+3x-4)}[/tex]

The following calculation can be used to evaluate the given expression:

Step 1 - Write the given expression.

[tex]=\rm \dfrac{(x^2-16)}{(2x+8)}\times \dfrac{(x^3-2x^2+x)}{(x^2+3x-4)}[/tex]

Step 2 - Factorize the above equations.

[tex]=\dfrac{(x-4)(x+4)}{(2x+8)}\times \dfrac{x(x-1)^2}{(x^2+4x-x-4)}[/tex]

[tex]=\dfrac{(x-4)(x+4)}{(2x+8)}\times \dfrac{x(x-1)^2}{(x(x+4)-(x+4))}[/tex]

[tex]=\dfrac{(x-4)(x+4)}{(2x+8)}\times \dfrac{x(x-1)^2}{(x+4)(x-1)}[/tex]

Step 3 - Simplify the above expression.

[tex]=\dfrac{(x-4)}{2}\times \dfrac{x(x-1)}{(x+4)}[/tex]

Step 4 - Rewrite the above expression.

[tex]=\dfrac{x(x-1)(x-4)}{2(x+4)}[/tex]

So, the product of the given expression is [tex]\dfrac{x(x-1)(x-4)}{2(x+4)}[/tex] .

For more information, refer to the link given below:

https://brainly.com/question/21165491