Respuesta :
Answer:
[tex]\displaystyle x = \frac{40}{9}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \frac{x}{5} = \frac{8}{9}[/tex]
Step 2: Solve for x
- Cross-multiply: [tex]9x = 40[/tex]
- Isolate x: [tex]\displaystyle x = \frac{40}{9}[/tex]
Step 3: Check
Plug in x into the original equation to verify it's a solution.
- Substitute in x: [tex]\displaystyle \frac{\frac{40}{9}}{5} = \frac{8}{9}[/tex]
- Divide: [tex]\displaystyle \frac{8}{9} = \frac{8}{9}[/tex]
Here we see that [tex]\displaystyle \frac{8}{9}[/tex] does equal [tex]\displaystyle \frac{8}{9}[/tex].
∴ [tex]\displaystyle x = \frac{40}{9}[/tex] is the solution to the equation.
Answer:
[tex] \frac{x}{5} = \frac{8}{9} \\ x = \frac{(5 \times 8)}{9} \\ \boxed{x = \frac{40}{9} }[/tex]