Respuesta :

Space

Answer:

[tex]\displaystyle x = \frac{40}{9}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtract Property of Equality

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle \frac{x}{5} = \frac{8}{9}[/tex]

Step 2: Solve for x

  1. Cross-multiply:                    [tex]9x = 40[/tex]
  2. Isolate x:                              [tex]\displaystyle x = \frac{40}{9}[/tex]

Step 3: Check

Plug in x into the original equation to verify it's a solution.

  1. Substitute in x:                    [tex]\displaystyle \frac{\frac{40}{9}}{5} = \frac{8}{9}[/tex]
  2. Divide:                                 [tex]\displaystyle \frac{8}{9} = \frac{8}{9}[/tex]

Here we see that [tex]\displaystyle \frac{8}{9}[/tex] does equal [tex]\displaystyle \frac{8}{9}[/tex].

∴ [tex]\displaystyle x = \frac{40}{9}[/tex] is the solution to the equation.

Answer:

[tex] \frac{x}{5} = \frac{8}{9} \\ x = \frac{(5 \times 8)}{9} \\ \boxed{x = \frac{40}{9} }[/tex]

40/9 is the right answer.