Respuesta :
Answer:
d. Yes, because the confidence interval does not contain zero.
Step-by-step explanation:
We are given that the university looks at 35 in-state applicants and 35 out-of-state applicants. The mean SAT math score for in-state applicants was 540, with a standard deviation of 20.
The mean SAT math score for out-of-state applicants was 555, with a standard deviation of 25.
Firstly, the Pivotal quantity for 95% confidence interval for the difference between the population means is given by;
P.Q. = [tex]\frac{(\bar X_1-\bar X_2)-(\mu_1-\mu_2)}{s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] ~ [tex]t__n__1-_n__2-2[/tex]
where, [tex]\bar X_1[/tex] = sample mean SAT math score for in-state applicants = 540
[tex]\bar X_2[/tex] = sample mean SAT math score for out-of-state applicants = 555
[tex]s_1[/tex] = sample standard deviation for in-state applicants = 20
[tex]s_2[/tex] = sample standard deviation for out-of-state applicants = 25
[tex]n_1[/tex] = sample of in-state applicants = 35
[tex]n_2[/tex] = sample of out-of-state applicants = 35
Also, [tex]s_p=\sqrt{\frac{(n_1-1)s_1^{2} +(n_2-1)s_2^{2} }{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(35-1)\times 20^{2} +(35-1)\times 25^{2} }{35+35-2} }[/tex] = 22.64
Here for constructing 95% confidence interval we have used Two-sample t test statistics.
So, 95% confidence interval for the difference between population means ([tex]\mu_1-\mu_2[/tex]) is ;
P(-1.997 < [tex]t_6_8[/tex] < 1.997) = 0.95 {As the critical value of t at 68 degree
of freedom are -1.997 & 1.997 with P = 2.5%}
P(-1.997 < [tex]\frac{(\bar X_1-\bar X_2)-(\mu_1-\mu_2)}{s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] < 1.997) = 0.95
P( [tex]-1.997 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] < [tex]{(\bar X_1-\bar X_2)-(\mu_1-\mu_2)}[/tex] < [tex]1.997 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] ) = 0.95
P( [tex](\bar X_1-\bar X_2)-1.997 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] < ([tex]\mu_1-\mu_2[/tex]) < [tex](\bar X_1-\bar X_2)+1.997 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] ) = 0.95
95% confidence interval for ([tex]\mu_1-\mu_2[/tex]) =
[ [tex](\bar X_1-\bar X_2)-1.997 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] , [tex](\bar X_1-\bar X_2)+1.997 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] ]
=[[tex](540-555)-1.997 \times {22.64 \times \sqrt{\frac{1}{35} +\frac{1}{35} } }[/tex],[tex](540-555)+1.997 \times {22.64 \times \sqrt{\frac{1}{35} +\frac{1}{35} } }[/tex]]
= [-25.81 , -4.19]
Therefore, 95% confidence interval for the difference between population means SAT math score for in-state and out-of-state applicants is [-25.81 , -4.19].
This means that the mean SAT math scores for in-state students and out-of-state students differ because the confidence interval does not contain zero.
So, option d is correct as Yes, because the confidence interval does not contain zero.