In a pharmaceutical plant, a copper pipe (kc = 400 W/mK) with inner diameter of 20 mm and wall thickness of 2.5 mm is used for carrying liquid oxygen to a storage tank. The liquid oxygen flowing in the pipe has an average temperature of -200 deg C and a convention heat transfer coefficient of 120 W/m^2 K.

If the dew point is 10 deg C, determine the thickness of the insulation (ki = 0.05 W/m K) around the copper pipe to avoid condensation on the outer surface. Assume thermal contact resistance is negligible.

Respuesta :

Answer:

See explaination

Explanation:

Please kindly check attachment for the step by step solution of the given problem.

Ver imagen kendrich

The required thickness of insulation is 3.38 mm

Rate of heat transfer using the combined heat transfer co-efficient,[tex]Q=h_{combined}A_{3}\left ( T_{\infty } -T_{i}\right )[/tex]

   [tex]=20\left ( \Pi \times D_{3}\times L \right ) \left [ \left ( 20+273 \right ) -\left ( -200+273 \right )\right ][/tex]

   [tex]=13823D_{3} L[/tex]

Total thermal resistance from liquid oxygen to the outer surface of the insulation,

[tex]R_{total}=\frac{1}{h_{1}A_{1}}+\frac{In\left ( \frac{r_{2}}{r_{1}} \right )}{2\Pi k_{e}L}+\frac{In\left ( \frac{r_{3}}{r_{2}} \right )}{2\Pi k_{i}L}[/tex]

[tex]R_{total}=\frac{1}{h_{i}\left ( \Pi \times D_{1} \times L\right )}+\frac{In\left ( \frac{D_{2}}{D_{1}} \right )}{2\Pi k_{e}L}+\frac{In\left ( \frac{D_{3}}{D_{2}} \right )}{2\Pi k_{i}L}[/tex]

[tex]R_{total}=\frac{1}{120\left ( \Pi \times 20\times 10^{-3} \right )}+\frac{In\left ( \frac{25\times 10^{-3}}{20\times 10^{-3}} \right )}{2\times \Pi \times \left ( 400 \right )}+\frac{In\left ( \frac{D_{3}}{25\times 10^{-3}} \right )}{2\Pi \left ( 0.05 \right )}[/tex]

         [tex]=0.1326+\left ( 8.88\times 10^{-5} \right )+3.18In\left ( \frac{D_{3}}{0.025} \right )[/tex]

         [tex]=0.1327+3.18In\left ( \frac{D_{3}}{0.025} \right )[/tex]

Condensation of air occurs when the surface reaches dew point temperature.

[tex]T_{3}=10^{\circ}C=10+273=283K[/tex]

The rate of heat transfer can also be expressed as,

[tex]Q=\frac{T_{3}-T_{i}}{R_{total}}[/tex]

[tex]13823D_{3} L=\frac{283-\left ( -200+273 \right )}{R_{total}}[/tex]

[tex]R_{total}L=\frac{210}{13823D_{3}}[/tex]

[tex]0.1327+3.18In\left ( \frac{D_{3}}0.025{} \right )=\frac{210}{13823D_{3}}[/tex]

[tex]8.735+209.32In\left ( \frac{D_{3}}{0.025} \right )=\frac{1}{D_{3}}[/tex]

Solve the equation using an online calculator/EES/by trial and error to obtain [tex]{D_{3}[/tex].

[tex]{D_{3}=0.028375m\approx 28.38mm[/tex]

The thickness of the insulation,

[tex]t=D_{3}-D_{2}[/tex]

   [tex]=28.38-25[/tex]

   [tex]=3.38mm[/tex]

Learn More:https://brainly.com/question/2193562