Respuesta :

Answer : The half-life of this radioisotope is, [tex]9\text{ years}[/tex]

Explanation :

First we have to calculate the rate constant.

Expression for rate law for first order kinetics is given by:

[tex]k=\frac{2.303}{t}\log\frac{a}{a-x}[/tex]

where,

k = rate constant  = ?

t = time passed by the sample  = 18 years

a = initial amount of the reactant  = 100 g

a - x = amount left after decay process = 25 g

Now put all the given values in above equation, we get

[tex]k=\frac{2.303}{18\text{ years}}\log\frac{100g}{25g}[/tex]

[tex]k=0.077\text{ years}^{-1}[/tex]

Now we have to calculate the half-life, we use the formula :

[tex]k=\frac{0.693}{t_{1/2}}[/tex]

[tex]t_{1/2}=\frac{0.693}{0.077\text{ years}}[/tex]

[tex]t_{1/2}=9\text{ years}[/tex]

Therefore, the half-life of this radioisotope is, [tex]9\text{ years}[/tex]

Answer:

9 years

Explanation: