Answer:
[tex]5.252\times 10^{-20}\ kgm/s[/tex]
[tex]1.515\times 10^{-9}\ J[/tex]
Explanation:
h = Planck's constant = [tex]6.6\times 10^{-34}\ Js[/tex]
[tex]\Delta P[/tex] = Change in mometum
[tex]\Delta x[/tex] = Change in position = [tex]10^{-15}\ m[/tex]
n = 1
m = Mass of electron = [tex]9.1\times 10^{-31}\ kg[/tex]
From Heisenberg's uncertainty principle we know that
[tex]\Delta x\Delta P=\dfrac{nh}{4\pi}\\\Rightarrow \Delta P=\dfrac{nh}{4\pi\Delta x}\\\Rightarrow \Delta P=\dfrac{1\times 6.6\times 10^{-34}}{4\pi\times 10^{-15}}\\\Rightarrow \Delta P=5.252\times 10^{-20}\ kgm/s[/tex]
The minimum momentum is [tex]5.252\times 10^{-20}\ kgm/s[/tex]
Kinetic energy is given by
[tex]K=\dfrac{\Delta P^2}{2m}\\\Rightarrow K=\dfrac{(5.252\times 10^{-20})^2}{2\times 9.1\times 10^{-31}}\\\Rightarrow K=1.515\times 10^{-9}\ J[/tex]
The kinetic energy is [tex]1.515\times 10^{-9}\ J[/tex]