Respuesta :

Answer:

40.6 degrees

Step-by-step explanation:

We know:

KL = 6

JK = 7

Angle L = 90 degrees

So JL is the hypotenuse, meaning we can find it with Pythagorean Theorem. This gets us :

[tex]6^{2}+7^{2} = c^{2}\\c =\sqrt{85}[/tex]

We can find angle K with the following equation:

[tex]sin(k) =\frac{opposite}{hypotenuse} = sin(k) = \frac{6}{\sqrt{85} } = k = arcsin ( \frac{6}{\sqrt{85} }) = 40.6[/tex]

Answer:

31

Step-by-step explanation:

\cos K = Adj/Hyp = 6/7

cosK=  7/ 6

K=\cos^{-1}(6/7)

K=cos  −1  (  6/7  )

K=31.0027≈31