Answer:
40.6 degrees
Step-by-step explanation:
We know:
KL = 6
JK = 7
Angle L = 90 degrees
So JL is the hypotenuse, meaning we can find it with Pythagorean Theorem. This gets us :
[tex]6^{2}+7^{2} = c^{2}\\c =\sqrt{85}[/tex]
We can find angle K with the following equation:
[tex]sin(k) =\frac{opposite}{hypotenuse} = sin(k) = \frac{6}{\sqrt{85} } = k = arcsin ( \frac{6}{\sqrt{85} }) = 40.6[/tex]
Answer:
31
Step-by-step explanation:
\cos K = Adj/Hyp = 6/7
cosK= 7/ 6
K=\cos^{-1}(6/7)
K=cos −1 ( 6/7 )
K=31.0027≈31