Respuesta :
Answer:
1) [tex] E(M) = 14*0.3 + 10*0.4 + 19*0.3 = 13.9 \%[/tex]
2) [tex]E(J)= 22*0.3 + 4*0.4 + 12*0.3 = 11.8 \%[/tex]
3) [tex] E(M^2) = 14^2*0.3 + 10^2*0.4 + 19^2*0.3 = 207.1 [/tex]
And the variance would be given by:
[tex]Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89[/tex]
And the deviation would be:
[tex] Sd(M) = \sqrt{13.89}= 3.73[/tex]
4) [tex] E(J^2) = 22^2*0.3 + 4^2*0.4 + 12^2*0.3 =194.8 [/tex]
And the variance would be given by:
[tex]Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56[/tex]
And the deviation would be:
[tex] Sd(M) = \sqrt{55.56}= 7.45[/tex]
Step-by-step explanation:
For this case we have the following distributions given:
Probability M J
0.3 14% 22%
0.4 10% 4%
0.3 19% 12%
Part 1
The expected value is given by this formula:
[tex] E(X)=\sum_{i=1}^n X_i P(X_i)[/tex]
And replacing we got:
[tex] E(M) = 14*0.3 + 10*0.4 + 19*0.3 = 13.9 \%[/tex]
Part 2
[tex]E(J)= 22*0.3 + 4*0.4 + 12*0.3 = 11.8 \%[/tex]
Part 3
We can calculate the second moment first with the following formula:
[tex] E(M^2) = 14^2*0.3 + 10^2*0.4 + 19^2*0.3 = 207.1 [/tex]
And the variance would be given by:
[tex]Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89[/tex]
And the deviation would be:
[tex] Sd(M) = \sqrt{13.89}= 3.73[/tex]
Part 4
We can calculate the second moment first with the following formula:
[tex] E(J^2) = 22^2*0.3 + 4^2*0.4 + 12^2*0.3 =194.8 [/tex]
And the variance would be given by:
[tex]Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56[/tex]
And the deviation would be:
[tex] Sd(M) = \sqrt{55.56}= 7.45[/tex]