The energy, E, of a body of mass m moving with speed v is given by the formula below. The speed is nonnegative and less than the speed of light, c which is constant. Use lower case letters here. E = mc^2 (1/Squareroot1 - v^2/c^2 - 1)
(a) Find E/m = c^2Squareroot1 - v^2/c^2 - c^2/1 - v^2/c^2 what is the sign of this partial? Positive negative
(b) Find E/v =?

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

  [tex]\frac{\delta E}{\delta m}= c^2 [\frac{1}{\sqrt{1 - \frac{v^2}{c^2} } } -1 ][/tex]

b

       [tex]\frac{\delta E}{\delta V} = \frac{mc^3 v}{(c^2 - v^2 )^{\frac{3}{2} }}[/tex]

Step-by-step explanation:

From the question we are given

            [tex]E = mc^2 [\frac{1}{\sqrt{1 - \frac{v^2}{c^2} } }- 1 ][/tex]

So we are asked to find  [tex]\frac{\delta E}{\delta m}[/tex]

Now  this is mathematically evaluated as

          [tex]\frac{\delta E}{\delta m} = \frac{\delta }{\delta m} [mc^2 ( \frac{1}{\sqrt{1 - \frac{v^2}{c^2} } } -1 )][/tex]

               [tex]= c^2 [\frac{1}{\sqrt{1 - \frac{v^2}{c^2 } } } -1 ] \frac{\delta m}{\delta m}[/tex]

              [tex]= c^2 [\frac{1}{\sqrt{1 - \frac{v^2}{c^2} } } -1 ][/tex]

Also we are asked to find  [tex]\frac{\delta E}{\delta V}[/tex]

    Now  this is mathematically evaluated as

         [tex]\frac{\delta E}{\delta V} = \frac{\delta }{\delta v } [mc^2 ( \frac{1}{\sqrt{1 - \frac{v^2}{c^2} } } - 1 )][/tex]

         [tex]\frac{\delta E}{\delta V} = mc^2 [\frac{\delta }{\delta v} (\frac{c}{\sqrt{c^2 -v^2} } - 1 )][/tex]

              [tex]= mc^2 [c* [\frac{\delta }{\delta v} (c^2 - v^2 )^{-\frac{1}{2} }] - 0][/tex]

             [tex]= mc^3 [- \frac{1}{2} (c^2 - v^2 )^{-\frac{3}{2} } * (-2v)][/tex]

             [tex]= \frac{mc^3 v}{(c^2 - v^2 )^{\frac{3}{2} }}[/tex]

   

Ver imagen okpalawalter8