Answer:
Half-life of the goo is 49.5 minutes
[tex]G(t)= 300e^{-0.014t}[/tex]
191.7 grams of goo will remain after 32 minutes
Step-by-step explanation:
Let [tex]M_0\,,\,M_f[/tex] denotes initial and final mass.
[tex]M_0=300\,\,grams\,,\,M_f=37.5\,\,grams[/tex]
According to exponential decay,
[tex]\ln \left ( \frac{M_f}{M_0} \right )=-kt[/tex]
Here, t denotes time and k denotes decay constant.
[tex]\ln \left ( \frac{M_f}{M_0} \right )=-kt\\\ln \left ( \frac{37.5}{300} \right )=-k(150)\\-2.079=-k(150)\\k=\frac{2.079}{150}=0.014[/tex]
So, half-life of the goo in minutes is calculated as follows:
[tex]\ln \left ( \frac{50}{100} \right )=-kt\\\ln \left ( \frac{50}{100} \right )=-(0.014)t\\t=\frac{-0.693}{-0.014}=49.5\,\,minutes[/tex]
Half-life of the goo is 49.5 minutes
[tex]\ln \left ( \frac{M_f}{M_0} \right )=-kt\Rightarrow M_f=M_0e^{-kt}[/tex]
So,
[tex]G(t)= M_f=M_0e^{-kt}[/tex]
Put [tex]M_0=300\,\,grams\,,\,k=0.014[/tex]
[tex]G(t)= 300e^{-0.014t}[/tex]
Put t = 32 minutes
[tex]G(32)= 300e^{-0.014(32)}=300e^{-0.448}=191.7\,\,grams[/tex]