Answer:
Ke- = Ke+ = 0.294MeV
Explanation:
To fins the kinetic energy of both electron and positron you use the following formula, for the case of annihilation of one electron an positron:
2[tex]E_p=2E_o+K_{e^-}+K_{e^+}[/tex] (1)
Ep: photon energy = 0.804MeV
Eo: rest energy of one electron (and positron) = 0.51MeV
Ke-: kinetic energy of electron
Ke+: kinetic energy of positron
You replace the values of Ep and Eo in the equation (1):
[tex]K_{e^-}+K_{e^+}=2E_p-2E_o=2(0.804MeV-0.51MeV)=0.588MeV[/tex]
Iy you assume both positron and electron have the same speed, then, the kinetic energy of them are equal, and the kinetic energy of each one is:
[tex]K_{e^-}=K_{e^+}=\frac{0.588MeV}{2}=0.294MeV[/tex]