contestada

Use the quadratic formula to find both solutions to the quadratic equation given below. 2x^2+3x-5=0

Use the quadratic formula to find both solutions to the quadratic equation given below 2x23x50 class=

Respuesta :

Answer:

[tex] x =\frac{-b \pm \sqrt{b^2 -4ac}}{2a}[/tex]

Where a = 2 , b= 3, c= -5, replacing we have this:

[tex]x =\frac{-3 \pm \sqrt{(-3)^2 -4(2)(-5)}}{2*2}[/tex]

And simplifying we got:

[tex] x = \frac{-3 \pm \sqrt{49}}{4}[/tex]

And the two solutions are:

[tex] x_1 = \frac{-3+7}{4}= 1[/tex]

[tex] x_2 = \frac{-3-7}{4}= -\frac{5}{2}[/tex]

And the correct options are:

B and C

Step-by-step explanation:

We have the following equation given:

[tex] 2x^2 +3x -5=0[/tex]

And if we use the quadratic formula given by:

[tex] x =\frac{-b \pm \sqrt{b^2 -4ac}}{2a}[/tex]

Where a = 2 , b= 3, c= -5, replacing we have this:

[tex]x =\frac{-3 \pm \sqrt{(-3)^2 -4(2)(-5)}}{2*2}[/tex]

And simplifying we got:

[tex] x = \frac{-3 \pm \sqrt{49}}{4}[/tex]

And the two solutions are:

[tex] x_1 = \frac{-3+7}{4}= 1[/tex]

[tex] x_2 = \frac{-3-7}{4}= -\frac{5}{2}[/tex]

And the correct options are:

B and C