Respuesta :

Answer:

Option B.

Step-by-step explanation:

Option A.

f(x) = [tex](0.5)^{x}[/tex]

Derivative of the given function,

f'(x) = [tex]\frac{d}{dx}(0.5)^x[/tex]

      = [tex](0.5)^x[\text{ln}(0.5)][/tex]

      = [tex]-(0.693)(0.5)^{x}[/tex]

Since derivative of the function is negative, the given function is decreasing.

Option B. f(x) = [tex]5^x[/tex]

f'(x) = [tex]\frac{d}{dx}(5)^x[/tex]

      = [tex](5)^x[\text{ln}(5)][/tex]

      = [tex]1.609(5)^x[/tex]

Since derivative is positive, given function is increasing.

Option C. f(x) = [tex](\frac{1}{5})^x[/tex]

f'(x) = [tex]\frac{d}{dx}(\frac{1}{5})^x[/tex]

      = [tex]\frac{d}{dx}(5)^{(-x)}[/tex]

      = [tex]-5^{-x}.\text{ln}(5)[/tex]

Since derivative is negative, given function is decreasing.

Option D. f(x) = [tex](\frac{1}{15})^x[/tex]

                f'(x) = [tex]-15^{-x}[\text{ln}(15)][/tex]

                       = [tex]-2.708(15)^{-x}[/tex]

Since derivative is negative, given function is decreasing.

Option (B) is the answer.