Respuesta :
Answer:
a : b : c = 12 : 10 : 15
Step-by-step explanation:
Given that: b = [tex]\frac{2}{5}[/tex] of c
i.e b = [tex]\frac{2c}{5}[/tex] ............... 1
2c = 5b
So that;
c = [tex]\frac{5b}{2}[/tex] .................... 2
Also,
4a = 3c
a = [tex]\frac{3c}{4}[/tex] ................ 3
⇒ a = [tex]\frac{3}{4}[/tex] × ([tex]\frac{5b}{2}[/tex])
a = [tex]\frac{15b}{8}[/tex] ................. 4
15b = 8a
b = [tex]\frac{8a}{15}[/tex] ................. 5
Comparing the derived equations:
From equations 2 and 3,
a:c = [tex]\frac{15b}{8}[/tex]: [tex]\frac{5b}{2}[/tex] = 4:5
From equations 1 and 2,
b:c = [tex]\frac{2c}{5}[/tex] : [tex]\frac{5b}{2}[/tex] = 2:3
But a common value of b = 15, gives;
a : c = 12 : 15 and b : c = 10 : 15
Thus, a : b : c = 12 : 10 : 15
The ratio a:b:c in its simplest form is 15:8:20
Ratios and Proportions
Given the following parameters
- b = 2/5 c
- 4a = 3c
- a = 3/4c
To get the ratio of a:b:c, we will substitute the value of a and b into the ratio to have:
a:b:c = 3/4c : 2/5c :c
Multiply through by 20 to have:
a:b:c = 3/4c * 20 : 2/5c * 20: 20c
a:b:c = 15c:8c:20c
a:b:c = 15:8:20
Hence the ratio a:b:c in its simplest form is 15:8:20
Learn more on ratio here: https://brainly.com/question/2914376