Respuesta :

Answer:

a : b : c = 12 : 10 : 15

Step-by-step explanation:

Given that: b = [tex]\frac{2}{5}[/tex] of c

 i.e             b = [tex]\frac{2c}{5}[/tex] ............... 1

          2c = 5b

So that;

          c = [tex]\frac{5b}{2}[/tex] .................... 2

Also,    

          4a = 3c

           a = [tex]\frac{3c}{4}[/tex] ................ 3

⇒          a = [tex]\frac{3}{4}[/tex] × ([tex]\frac{5b}{2}[/tex])

             a = [tex]\frac{15b}{8}[/tex] ................. 4

           15b = 8a

           b = [tex]\frac{8a}{15}[/tex] ................. 5

Comparing the derived equations:

From equations 2 and 3,

a:c = [tex]\frac{15b}{8}[/tex]: [tex]\frac{5b}{2}[/tex] = 4:5

From equations 1 and 2,

b:c = [tex]\frac{2c}{5}[/tex] : [tex]\frac{5b}{2}[/tex] = 2:3

But a common value of b = 15, gives;

a : c = 12 : 15 and b : c = 10 : 15  

Thus, a : b : c = 12 : 10 : 15

The ratio a:b:c in its simplest form is 15:8:20

Ratios and Proportions

Given the following parameters

  • b = 2/5 c
  • 4a = 3c
  • a = 3/4c

To get the ratio of a:b:c, we will substitute the value of a and b into the ratio to have:

a:b:c = 3/4c : 2/5c :c

Multiply through by 20 to have:

a:b:c = 3/4c * 20 : 2/5c * 20: 20c

a:b:c = 15c:8c:20c

a:b:c = 15:8:20

Hence the ratio a:b:c in its simplest form is 15:8:20

Learn more on ratio here: https://brainly.com/question/2914376