Respuesta :
Answer:
-$0.75
Step-by-step explanation:
For calculation of expected value first we need to find out the probability distribution for this raffle which is shown below:-
Amount Probability
500 - 1 = $499 1 ÷ 5,000
200 - 1 = $199 3 ÷ 5,000
10 - 1 = $9 5 ÷ 5,000
5 - 1 = $4 20 ÷ 5,000
-$1 5,000 - 29 ÷ 5,000 = 4,971 ÷ 5,000
Now, the expected value of raffle will be
[tex]= \$499 \times (\frac{1}{5,000}) + \$199 \times (\frac{3}{5,000}) + \$9 \times (\frac{5}{5,000}) + \$4 \times (\frac{20}{5,000}) - \$1 \times (\frac{4,971}{5,000})[/tex]
= 0.0998 + 0.1194 + 0.009 + 0.016 - 0.9942
= -$0.75
The expected value of this raffle per ticket is $ 0.25.
Given that five thousand tickets are sold at $ 1 each for a charity raffle, and tickets are to be drawn at random and monetary prizes awarded as follows: 1 prize of $ 500, 3 prizes of $ 200, 5 prizes of $ 10, and 20 prizes of $ 5, to determine what is the expected value of this raffle if you buy 1 ticket, the following calculation must be performed:
- (500 + 3 x 200 + 5 x 10 + 20 x 5) / 5000 = X
- (500 + 600 + 50 + 100) / 5000 = X
- 1250/5000 = X
- 0.25 = X
Therefore, the expected value of this raffle per ticket is $ 0.25.
Learn more in https://brainly.com/question/22097128